袋中装着标有数学1,2,3,4,5的小球各2个,从袋中任取3个小球,按3个小球上最大数字的9倍计分,每个小球被取出的可能性都相等,用表示取出的3个小球上的最大数字,求:(1)取出的3个小球上的数字互不相同的概率;(2) 计分介于20分到40分之间的概率.
(本小题满分12分)用数学归纳法证明:
(本小题满分12分). 一物体沿直线以速度(的单位为:秒,的单位为:米/秒)的速度作变速直线运动,求该物体从时刻t=0秒至时刻 t=5秒间运动的路程?
函数 (1)若f(-1)=0,并对恒有,求的表达式; (2)在(1)的条件下,对,=—kx是单调函数,求k的范围。
(本题满分12分) 某桶装水经营部每天的房租,人员工资等固定成本为200元,每桶水的进价是5元。销售单价与日均销售的关系如下表所示
设在进价基础上增加x元后,日均销售利润为y元。 (1)写出日均销售量P与x的函数关系式,标出定义域; (2)请根据以上数据作出分析:这个经营部怎样定价才能获得最大利润?
已知c>0.设命题P:函数y=cx在R上单调递减;Q:函数在上恒为增函数.若P或Q为真, P且Q为假,求c的取值范围。