根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3.设各车主购买保险相互独立. (I)求该地1位车主至少购买甲、乙两种保险中的1种的概率; (II)求该地3位车主中恰有1位车主甲、乙两种保险都不购买的概率.
(本小题满分12分) 在△ABC中,已知,,B=45°求及c 。
(13分) 已知函数。 (I)当时,求曲线在点处的切线方程; (Ⅱ)当函数在区间上的最小值为时,求实数的值; (Ⅲ)若函数与的图象有三个不同的交点,求实数的取值范围。
. (12分) 已知函数f(x)= ,(p≠0)是奇函数. (1)求m的值. (2)若p>1,当x∈[1,2]时,求f(x)的最大值和最小值.
(12分) 已知a、b、c是互不相等的非零实数. 求证:三个方程ax2+2bx+c=0,bx2+2cx+a=0,cx2+2ax+b=0至少有一个方程有两个相异实根.
设复数,试求实数m取何值时 (1)Z是实数; (2)Z是纯虚数; (3)Z对应的点位于复平面的第一象限