根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3.设各车主购买保险相互独立. (I)求该地1位车主至少购买甲、乙两种保险中的1种的概率; (II)求该地3位车主中恰有1位车主甲、乙两种保险都不购买的概率.
.(本题10分)中心在原点,焦点在x轴上的椭圆C上的点到焦点距离的最大值为3,最小值为1.(1)求椭圆C的方程;(2)若直线与椭圆C相交于A,B两点(A,B不是左右顶点),且以AB为直径的圆过椭圆C的右顶点.求证:直线l过定点,并求该定点的坐标.
(本题10分)在如图的长方体中,AD=AA1=1,AB=2,点E在棱AB上移动.(1)当E为AB的中点时,求点E到平面ACD1的距离;(2)AE等于何值时,二面角D1-EC-D的大小为.
(本题8分)如图,正三棱柱底面边长为. (1)若侧棱长为,求证:;(2)若AB1与BC1成角,求侧棱长
(本题8分)已知直线被抛物线C:截得的弦长.(1)求抛物线C的方程;(2)若抛物线C的焦点为F,求三角形ABF的面积.
(本小题满分12分)是双曲线上一点,、分别是双曲线的左、右顶点,直线、的斜率之积为(I)求双曲线的离心率;(II)过双曲线的右焦点且斜率为1的直线交双曲线于两点,为坐标原点,为双曲线上一点,满足,求的值.