等比数列中,分别是下表第一、二、三行中的某一个数,且中的任何两个数不在下表的同一列.
(Ⅰ)求数列的通项公式; (Ⅱ)若数列满足:,求数列的前项和.
(本小题满分12分)已知函数. (Ⅰ)求函数的单调递增区间; (Ⅱ)数列满足:,且,记数列的前n项和为, 且. (ⅰ)求数列的通项公式;并判断是否仍为数列中的项?若是,请证明;否则,说明理由. (ⅱ)设为首项是,公差的等差数列,求证:“数列中任意不同两项之和仍为数列中的项”的充要条件是“存在整数,使”
(本小题满分12分)
Q
已知椭圆:的一个焦点是(1,0),两个焦点与短轴的一个端点
(本小题满分12分) 某种食品是经过、、三道工序加工而成的,、、工序的产品合格率分别为、、.已知每道工序的加工都相互独立,三道工序加工的产品都为合格时产品为一等品;有两道合格为二等品;其它的为废品,不进入市场. (Ⅰ)正式生产前先试生产袋食品,求这2袋食品都为废品的概率; (Ⅱ)设为加工工序中产品合格的次数,求的分布列和数学期望.
(本小题满分12分) 如图一,平面四边形关于直线对称,. 把沿折起(如图二),使二面角的余弦值等于.对于图二,完成以下各小题: (Ⅰ)求两点间的距离; (Ⅱ)证明:平面; (Ⅲ)求直线与平面所成角的正弦值.
(本小题满分12分) 已知向量(为常数且),函数在上的最大值为. (Ⅰ)求实数的值; (Ⅱ)把函数的图象向右平移个单位,可得函数的图象,若在上为增函数,求的最大值.