设函数 f x = x + a x 2 + b ln x ,曲线 y = f x 过 P 1 , 0 ,且在 P 点处的切斜线率为 2 . (1)求 a , b 的值; (2)证明: f x ≤ 2 x - 2 。
(本小题满分10分)已知在直角坐标系中,圆的参数方程为为参数).(1)以原点为极点、轴正半轴为极轴建立极坐标系,求圆的极坐标方程;(2)直线的坐标方程是,且直线与圆交于两点,试求弦的长.
(本小题满分10分)自圆外一点引圆的两条割线和,如图所示,其中割线过圆心,.(1)求的大小;(2)分别求线段和的长度.
(本小题满分12分)已知函数,且曲线在点处的切线与直线平行.(1)求的值;(2)判断函数的单调性;(3)记,试证明:当时,.
(本小题满分12分)已知椭圆的离心率为,以原点为圆心,椭圆的长半轴这半径的圆与直线相切.(1)求椭圆标准方程;(2)已知点为动直线与椭圆的两个交点,问:在轴上是否存在点,使为定值?若存在,试求出点的坐标和定值,若不存在,说明理由.
(本小题满分12分)如图,已知四棱锥中,平面,底面是正方形,为上的动点,为棱的中点.(1)求证:平面;(2)试确定点的位置,使得平面平面,并说明理由.