在平面直角坐标系 x O y 中,曲线 C 1 的参数方程为 x = cos φ y = sin φ ( φ 为参数)曲线 C 2 的参数方程为 x = a c o s φ y = b s i n φ ( a > b > 0 , φ 为参数)在以 0 为极点, x 轴的正半轴为极轴的极坐标系中,射线 l : θ = α 与 C 1 , C 2 各有一个交点.当 α = 0 时,这两个交点间的距离为 2 ,当 α = π 2 时,这两个交点重合.
(1)分别说明 C 1 , C 2 是什么曲线,并求出 a 与 b 的值; (2)设当 α = π 4 时, l 与 C 1 , C 2 的交点分别为 A 1 , B 1 ,当 α = - π 4 时, l 与 C 1 , C 2 的交点为 A 2 , B 2 ,求四边形 A 1 A 2 B 2 B 1 的面积.
如图,正方形的边长为1,,分别为边,上的点.当的周长为2时,求的大小.
已知直线,是,之间的一定点,并且点到,的距离分别为,.是直线上一动点,作.且使与直线交于点,求面积的最小值.
已知,,求的值.
若,试用含的式子表示.
已知,,求证:.