在平面直角坐标系 x O y 中,曲线 C 1 的参数方程为 x = cos φ y = sin φ ( φ 为参数)曲线 C 2 的参数方程为 x = a c o s φ y = b s i n φ ( a > b > 0 , φ 为参数)在以 0 为极点, x 轴的正半轴为极轴的极坐标系中,射线 l : θ = α 与 C 1 , C 2 各有一个交点.当 α = 0 时,这两个交点间的距离为 2 ,当 α = π 2 时,这两个交点重合.
(1)分别说明 C 1 , C 2 是什么曲线,并求出 a 与 b 的值; (2)设当 α = π 4 时, l 与 C 1 , C 2 的交点分别为 A 1 , B 1 ,当 α = - π 4 时, l 与 C 1 , C 2 的交点为 A 2 , B 2 ,求四边形 A 1 A 2 B 2 B 1 的面积.
已知函数. (1)求函数的最小正周期; (2)当时,求函数的最大值和最小值.
在无穷数列中,,对于任意,都有,. 设, 记使得成立的的最大值为. (1)设数列为1,3,5,7,,写出,,的值; (2)若为等差数列,求出所有可能的数列; (3)设,,求的值.(用表示)
设是椭圆上不关于坐标轴对称的两个点,直线交轴于点(与点不重合),O为坐标原点. (1)如果点是椭圆的右焦点,线段的中点在y轴上,求直线AB的方程; (2)设为轴上一点,且,直线与椭圆的另外一个交点为C,证明:点与点关于轴对称.
已知函数,其中. (1)若,求函数的极值; (2)当时,试确定函数的单调区间.
如图,在三棱锥中,底面,,为的中点, 为的中点,,. (1)求证:平面; (2)求与平面成角的正弦值; (3)设点在线段上,且,平面,求实数的值.