(1)已知两个等比数列 a n , b n ,满足 a 1 = a a > 0 , b 1 - a 1 = 1 , b 2 - a 2 = 2 , b 3 - a 3 = 3 ,若数列 a n 唯一,求 a 的值; (2)是否存在两个等比数列 a n , b n ,使得 b 1 - a 1 , b 2 - a 2 , b 3 - a 3 , b 4 - a 4 成公差不为的等差数列?若存在,求 a n , b n 的通项公式;若不存在,说明理由.
如图,双曲线与抛物线相交于,直线AC、BD的交点为P(0,p)。(I)试用m表示(II)当m变化时,求p的取值范围。
已知(x,y)在映射f下的象是(x+y,x2-y),其中x≥0,求:(2,-2)的原象.
(1)已知函数y=ln(-x2+x-a)的定义域为(-2,3),求实数a的取值范围;(2)已知函数y=ln(-x2+x-a)在(-2,3)上有意义,求实数a的取值范围.
已知函数f(x)=lg(ax-bx)(a>1>b>0).(1)求y=f(x)的定义域;(2)在函数y=f(x)的图象上是否存在不同的两点,使得过这两点的直线平行于x轴;(3)当a,b满足什么条件时,f(x)在(1,+∞)上恒取正值.
设函数f(x)=(x _ 1)ex _ kx2(k∈R).(Ⅰ)当k=1时,求函数f(x)的单调区间;(Ⅱ)当k∈(1/2,1]时,求函数f(x)在[0,k]上的最大值M.