设 f ( x ) = - 1 3 x 3 + 1 2 x 2 + 2 a x . (1)若 f ( x ) 在 ( 2 3 , + ∞ ) 上存在单调递增区间,求 a 的取值范围; (2)当 0 < a < 2 时, f ( x ) 在 1 , 4 上的最小值为 - 16 3 ,求 f ( x ) 在该区间上的最大值.
在极坐标系中,已知曲线C1:ρ=12sinθ,曲线C2:ρ=12cos.(1)求曲线C1和C2的直角坐标方程;(2)若P、Q分别是曲线C1和C2上的动点,求PQ的最大值.
在平面直角坐标系中,以坐标原点为极点,x轴的非负半轴为极轴建立坐标系.已知点A的极坐标为,直线的极坐标方程为ρcos=a,且点A在直线上.(1)求a的值及直线的直角坐标方程;(2)圆C的参数方程为,(α为参数),试判断直线与圆的位置关系.
在极坐标系中,求点到直线ρsinθ=2的距离.
在极坐标系中,已知圆C经过点P,圆心为直线ρsin=-与极轴的交点,求圆C的极坐标方程.
在极坐标系中,求曲线ρ=cosθ+1与ρcosθ=1的公共点到极点的距离.