若关于x的方程x2―(a2+b2―6b)x+ a2+b2+2a―4b+1=0的两个实数根x1,x2满足x1≤0≤x2≤1,则a2+b2+4a的最大值和最小值分别为( )
函数y=2cos2x+1()的最小正周期为( ) ABCD
过双曲线的右顶点A作斜率为一1的直线,该直线与双曲线的两条渐近线的交点分别为B,C,若A,B,C三点的横坐标成等比数列,则双曲线的离心率为
已知函数,如果存在实数x1,使得对任意的实数x,都有成立,则的最小值为
在二项式(的展开式中,各项系数之和为M,各项二项式系数之和为N,且M+N=72,则展开式中常数项的值为
已知A,B,C,D是同一球面上的四个点,其中△ABC是正三角形,AD⊥平面ABC,AD=2AB=6则该球的表面积为