(本小题满分12分)某学校为提升数字化信息水平,在校园之间架设了7条网线,这7条网线其中有两条能通过一个信息量,有三条能通过两个信息量,有两条能通过三个信息量.现从中任选三条网线,设可通过的信息量为X,当可通过的信息量不小于6时,则可保证校园内的信息通畅.(1)求线路信息通畅的概率;(2)求线路可通过的信息量X的分布列和数学期望.
已知a,b∈{正实数}且a≠b,比较+与a+b的大小.
已知曲线C的极坐标方程为,直线的参数方程为(t为参数,) (1)把曲线C的极坐标方程化为直角坐标方程,并说明曲线C的形状; (2)若直线经过点,求直线被曲线C截得的线段AB的长。
已知在直角坐标系xOy中,曲线C的参数方程为(为参数),直线经过定点P(3,5),倾斜角为(1)写出直线的参数方程和曲线C的标准方程;(2)设直线与曲线C相交于A、B两点,求的值。
在平面直角坐标系中,以为极点,轴非负半轴为极轴建立坐标系,已知曲线的极坐标方程为,直线的参数方程为: (为参数),两曲线相交于两点. (1)写出曲线的直角坐标方程和直线的普通方程;(2)若求的值.
已知直线:为参数), 曲线 (为参数). (1)设与相交于两点,求; (2)若把曲线上各点的横坐标压缩为原来的倍,纵坐标压缩为原来的倍,得到曲线,设点是曲线上的一个动点,求它到直线的距离的最小值.