(本小题满分12分)已知在中,角,,的对边的边长分别为,,,且.(Ⅰ)求角的大小;(Ⅱ)现给出三个条件:①;②;③.试从中选出两个可以确定的条件,写出你的选择,并以此为依据求出的面积.(只需写出一个选定方案即可,选多种方案以第一种方案记分)
(本小题满分12分)某气象仪器研究所按以下方案测试一种“弹射型”气象观测仪器的垂直弹射高度:在C处进行该仪器的垂直弹射,观测点A、B两地相距100米,,在A地听到弹射声音的时间比B地晚秒,A地测得该仪器在A、B、C三地位于同一水平面上,至最高点H时的仰角为30°,求该仪器的垂直弹射高度CH(声音的传播速度为340米/秒)
(本小题满分10分)已知函数.(1)求函数的定义域; (2)判断的奇偶性;(3)方程是否有根?如果有根,请求出一个长度为的区间,使;如果没有,请说明理由?(注:区间的长度).
(本小题12分)已知二次函数满足且.(1)求的解析式;(2) 当时,不等式:恒成立,求实数的范围.(3)设,求的最大值;
(本小题10分)已知函数=.(1)用定义证明函数在(-∞,+∞)上为减函数;(2)若x[1,2],求函数的值域;(3)若=,且当x[1,2]时恒成立,求实数的取值范围.
(本小题8分)经过调查发现,某种新产品在投放市场的30天中,前20天其价格直线上升,后10天价格呈直线下降趋势。现抽取其中4天的价格如下表所示:
(1)写出价格关于时间的函数表达式(表示投放市场的第天)(2)若销售量与时间的函数关系式为:,问该产品投放市场第几天,日销售额最高?