(本小题10分)在边长为60cm的正方形铁皮的四角上切去相等的小正方形,再把它的边沿虚线折起,做成一个无盖的方底箱子,箱底的边长是多少时,箱子的容积最大?最大容积是多少?
如图,和都经过两点,是的切线,交于点,是的切线,交于点,求证:.
用分析法证明:若,则.
画出解不等式()的程序框图.
甲乙两人进行掰手腕比赛,比赛规则规定三分钟为一局,三分钟内不分胜负为平局,当有一人赢3局就结束比赛,否则继续进行,根据以往经验,每次甲胜的概率为,乙胜的概率为,且每局比赛胜负互不受影响. (Ⅰ)求比赛4局乙胜的概率; (Ⅱ)求在2局比赛中甲的胜局数为ξ的分布列和数学期望; (Ⅲ)若规定赢一局得2分,平一局得1分,输一局得0分,比赛进行五局,积分有超过5分者比赛结束,否则继续进行,求甲得7分的概率.
甲、乙两袋装有大小相同的红球和白球,甲袋装有2个红球,2个白球;乙袋装有2个红球,n个白球.现从甲,乙两袋中各任取2个球. (Ⅰ)若n=3,求取到的4个球全是红球的概率; (Ⅱ)若取到的4个球中至少有2个红球的概率为,求n.