设O为坐标原点,M(2,1),点N(x,y)满足,则的最大值是 A 9 B 2 C 6 D 14
若复数 x 满足 z 2 - i = 11 + 7 i ( i 为虚数单位),则 z 为()
函数 f ( x ) 在 [ a , b ] 上有定义,若对任意 x 1 , x 2 ∈ [ a , b ] ,有 f ( x 1 + x 2 2 ) ≤ 1 2 [ f ( x 1 ) + f ( x 2 ) ] 则称 f ( x ) 在 [ a , b ] 上具有性质 P .设 f ( x ) 在[1,3]上具有性质 P ,现给出如下命题: ① f ( x ) 在[1,3]上的图像是连续不断的; ② f ( x ) 在[1, 3 ]上具有性质 P ; ③若 f ( x ) 在 x = 2 处取得最大值1,则 f ( x ) = 1 , x ∈ [1,3]; ④对任意 x 1 , x 2 , x 3 , x 4 ∈ [1,3],有 f ( x 1 + x 2 + x 3 + x 4 4 ) ≤ 1 2 [ f ( x 1 ) + f ( x 2 ) + f ( x 3 ) + f ( x 4 ) ] 其中真命题的序号是
若直线 y = 2 x 上存在点 ( x , y ) 满足约束条件 { x + y - 3 ≤ 0 x - 2 y - 3 ≤ 0 x ≥ m ,则实数 m 的最大值为
已知双曲线 x 2 4 - y 2 5 = 1 的右焦点与抛物线 y 2 = 12 x 的焦点重合,则该双曲线的焦点到其渐近线的距离等于()
设函数 D x = 1 , x 为有理函数 0 , x 为无理函数 ,则下列结论错误的是()