(本小题满分16分)甲、乙两人各进行3次射击,甲每次击中目标的概率为,乙每次击中目标的概率为.(1)记甲击中目标的次数为X,求X的概率分布及数学期望E (X);(2)求乙至多击中目标2次的概率;(3)求甲恰好比乙多击中目标2次的概率.
已知向量,设函数+1 (1)若, ,求的值; (2)在△ABC中,角A,B,C的对边分别是,且满足,求 的取值范围.
已知函数 (1)求函数的极值点; (2)若直线过点且与曲线相切,求直线的方程;
一动圆与圆外切,与圆内切. (1)求动圆圆心的轨迹的方程; (2)设过圆心的直线与轨迹相交于、两点,请问(为圆的圆心)的内切圆的面积是否存在最大值?若存在,求出这个最大值及直线的方程,若不存在,请说明理由.
已知函数,数列满足. (1)证明数列是等差数列,并求数列的通项公式; (2)记,求.
如图所示的长方体中,底面是边长为的正方形,为与的交点,,是线段的中点. (1)求证:平面; (2)求三棱锥的体积