某地政府为科技兴市,欲将如图所示的一块不规则的非农业用地规划建成一个矩形的高科技工业园区.已知⊥,∥,且,,曲线段是以点为顶点且开口向上的抛物线的一段.如果要使矩形的相邻两边分别落在,上,且一个顶点落在曲线段上.问:应如何规划才能使矩形工业园区的用地面积最大?并求出最大的用地面积(精确到).
(本小题满分12分)已知函数的最大值是2,且.(Ⅰ)求的值;(Ⅱ)已知锐角△的内角的对边分别为,若,,.求△的面积.
在平面直角坐标系中,点A(-3,0),B(3,0),动点P满足(1)若点P的轨迹为曲线C,求此曲线的方程;(2)若点Q在直线l1:x+y+3=0上,直线l2经过点Q且与曲线C只有一个公共点M,求的最小值.(3)动圆的半径为,圆心在在直线上,若圆上存在点,使得,求圆心的纵坐标的取值范围.
已知以点C (t∈R,t≠0)为圆心的圆与x轴交于点O,A,与y轴交于点O,B,其中O为原点.(1)求证:△AOB的面积为定值;(2)设直线2x+y-4=0与圆C交于点M,N,若,求圆C的方程;(3)在(2)的条件下,设P,Q分别是直线l:x+y+2=0和圆C上的动点,求的最小值及此时点P的坐标.
如图,在四棱台中,底面,四边形为正方形,,,平面.(1)证明:为的中点;(2)求点到平面的距离.
如图所示,矩形中,平面,,为上的点,且平面(1)求证:平面;(2)求证:平面;(3)求三棱锥的体积.