用反证法证明命题:若系数都为整数的一元二次方程有有理根,那么中至少有一个是偶数。下列假设中正确的是( )
若集合A1、A2满足A1∪A2=A,则称(A1,A2)为集合A的一个分拆,并规定:当且仅当A1=A2时,(A1,A2)与(A2,A1)为集合A的同一种分拆,则集合A={a1,a2,a3}的不同分拆种数是()
函数的图像关于原点中心对称,则()
设0<x<π,则函数的最小值是 ( )
记二项式(1+2x)n展开式的各项系数和为an,其二项式系数和为bn,则等于()
已知函数f(x) ="3" - 2|x|,g(x) = x2- 2x,构造函数F(x),定义如下:当f(x)≥g(x)时,F(x) = g(x);当f(x)<g(x)时,F(x) =f(x),那么F(x)()