已知(1)当时,求在定义域上的最大值;(2)已知在上恒有,求的取值范围;(3)求证:
(本小题满分14分)建造一容积为8深为2m的长方体形无盖水池,每池底和池壁造价各为120元和80元.(1)求总造价关于一边长x的函数解析式,并指出该函数的定义域;(2)判断(1)中函数在和上的单调性;(3)如何设计水池尺寸,才能使总造价最低;
(本小题满分14分)如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB交PB于点F.(1)证明 PA//平面EDB;(2)证明PB⊥平面EFD;(3)求二面角C-PB-D的大小.
(本小题满分14分)如图所示,在棱长为2的正方体中,、分别为、的中点.(1)求证:;(2)求三棱锥的体积.
(本小题满分12分)已知四棱锥的底面是矩形,侧棱长相等,棱锥的高为4,其俯视图如图所示.(1)作出此四棱锥的主视图和侧视图,并在图中标出相关的数据;(2)求该四棱锥的侧面积.
(本小题满分12分)(1)(2)