(本小题满分12分)如图,平面ABC,EB//DC,AC=BC=EB=2DC=2,,P、Q分别为DE、AB的中点。(Ⅰ)求证:PQ//平面ACD;(Ⅱ)求几何体B—ADE的体积; (Ⅲ)求平面ADE与平面ABC所成锐二面角的正切值。
(本小题满分14分)已知函数,.(Ⅰ)时,证明:;(Ⅱ),若,求a的取值范围.
(本题满分14分)已知抛物线的焦点为F,点P是抛物线上的一点,且其纵坐标为4,.(1)求抛物线的方程;(2)设点,()是抛物线上的两点,∠APB的角平分线与x轴垂直,求△PAB的面积最大时直线AB的方程.
(本小题满分14分)设数列是公比为正数的等比数列,,.(1)求数列的通项公式;(2)若数列满足:,求数列的前项和.
(本小题满分14分)如图,在三棱锥P- ABC中,已知平面PBC 平面ABC.(1)若ABBC,CPPB,求证:CPPA:(2)若过点A作直线⊥平面ABC,求证://平面PBC.
【原创】设复数,(1)若,,求复数的实部为奇数,虚部为偶数的概率;(2) 若,,设表示直线与圆的交点个数,列出的概率分布列,并求出的数学期望;