(本小题满分12分)设函数曲线y=f(x)通过点(0,2a+3),且在点(-1,f(-1))处的切线垂直于y轴.(Ⅰ)用a分别表示b和c;(Ⅱ)当bc取得最小值时,求函数g(x)=-f(x)e-x的单调区间.
.已知正项数列的首项前项和为,且满足. (Ⅰ)求与 (Ⅱ)从集合取出三个数构成以正整数为公比的递增等比数列,放回后再取出三个数构成以正整数为公比的递增等比数列,相同的数列只取一次,按照上述取法取下去,直到取完所有满足条件的数列为止。求满足上述条件的所有的不同数列的和M.
在中,是角A,B,C的对边,且. (Ⅰ)求角B. (Ⅱ)若的面积且,求.
设平面上的向量满足关系,,且,. (Ⅰ)当时,求与的夹角的余弦值. (Ⅱ)当为何值时,.
若函数 (Ⅰ)当为何值时,函数取得最大值. (Ⅱ)求函数的单调递增区间. (Ⅲ)求函数对称中心.
如图,已知直线与轴、轴分别交于,抛物线经过点,点是抛物线与轴的另一个交点。 (1)求抛物线的解析式; (2)若点P在直线BC上,且,求P点坐标。