(1)求证:;(2)求值:.
商店出售茶壶和茶杯,茶壶单价为每个20元,茶杯单价为每个5元,该店推出两种促销优惠办法:(1)买1个茶壶赠送1个茶杯;(2)按总价打9.2折付款。某顾客需要购买茶壶4个,茶杯若干个,(不少于4个),若设购买茶杯数为x个,付款数为y(元),试分别建立两种优惠办法中y与x之间的函数关系式,并讨论该顾客买同样多的茶杯时,两种办法哪一种更省钱?
已知},,若,求实数的取值集合。
设,,求:(1); (2)。
已知椭圆C:(a>b>0)的一个顶点为A(2,0),离心率为,直线y=k(x-1)与椭圆C交于不同的两点M、N.①求椭圆C的方程.②当⊿AMN的面积为时,求k的值.
已知函数,曲线过点P(-1,2),且在点P处的切线恰好与直线x-3y=0垂直。①求a,b的值;②求该函数的单调区间和极值。③若函数在上是增函数,求m的取值范围.