(本小题满分12分) 如图,棱锥P—ABCD的底面ABCD是矩形, PA⊥平面ABCD,PA=AD=2,BD=. (1)求点C到平面PBD的距离.
O
(2)在线段上是否存在一点,使与平面所成的角
已知椭圆=1(0<b<2)与y轴交于A,B两点,点F为该椭圆的一个焦点,则△ABF面积的最大值为________.
设F为抛物线C:y2=4x的焦点,过点P(-1,0)的直线l交抛物线C于A、B两点,点Q为线段AB的中点,若|FQ|=2,则直线l的斜率等于________.
椭圆=1(a>b>0)的左、右顶点分别是A、B,左、右焦点分别是F1、F2.若|AF1|,|F1F2|,|F1B|成等比数列,则此椭圆的离心率为________.
椭圆T:=1(a>b>0)的左,右焦点分别为F1,F2,焦距为2c.若直线y= (x+c)与椭圆T的一个交点M满足∠MF1F2=2∠MF2F1,则该椭圆的离心率等于________.
过抛物线y2=4x的焦点F的直线交该抛物线于A,B两点.若|AF|=3, 则|BF|=________.