证明:如果求证:
已知. (1)求函数在上的最小值; (2)对一切,恒成立,求实数a的取值范围; (3) 证明:对一切,都有成立.
某工厂生产一种仪器,由于受生产能力和技术水平的限制,会产生一些次品,根据以往的经验知道,其次品率P与日产量(件)之间近似满足关系:(其中为小于96的正整常数) (注:次品率P=,如P=0.1表示每生产10件产品,有1件次品,其余为合格品.)已知每生产一件合格的仪器可以盈利A元,但每生产一件次品将亏损A/2元,故厂方希望定出合适的日产量。 试将生产这种仪器每天的赢利T(元)表示为日产量(件的函数); 当日产量为多少时,可获得最大利润?
一个盒子装有6张卡片,上面分别写着如下6个定义域为R的函数:,,,,,. (1)现从盒子中任取两张卡片,将卡片上的函数相加得到一个新函数,求所得函数是奇函数的概率; (2)现从盒子中逐一抽取卡片,且每次取出后均不放回,若取到一张记有偶函数的卡片则停止抽取,否则继续进行,求抽取次数ξ的分布列和数学期望.
盒中装有5个产品,其中3个一等品,2个二等品,从中不放回地取产品,每次1个,求: (1)取两次,两次都取得一等品的概率; (2)取两次,第二次取得一等品的概率; (3)取三次,第三次才取得一等品的概率; (4)取两次,已知第二次取得一等品,求第一次取得是二等品的概率.
已知数列{}满足=1,=,(1)计算,,的值;(2)归纳推测,并用数学归纳法证明你的推测.