在区间上随机取一个数,的值介于到之间的概率为
函数f1(x)=cosx﹣sinx,记f2(x)=f1′(x),f3(x)=f2′(x),…fn(x)=fn﹣1′(x),(n∈N*,n≥2),则=( )
若函数f(x)在R上可导,且满足f(x)>xf′(x),则( )
函数f(x)=ax3+bx2+cx+d(a≠0),若a+b+c=0,导函数f′(x)满足f′(0)f′(1)>0,设f′(x)=0的两根为x1,x2,则|x1﹣x2|的取值范围是( )
已知f(x)是定义在(0,+∞)上的单调函数,且对任意的x∈(0,+∞),都有f[f(x)﹣x3]=2,则方程f(x)﹣f′(x)=2的解所在的区间是( )
己知f(x)=xsinx,则f′(π)=( )