((本小题12分)如图, 在三棱柱中, 底面,, ,, 点D是的中点.(1) 求证;(2) 求证平面
某射手每次射击击中目标的概率是,且各次射击的结果互不影响.(1)假设这名射手射击5次,求恰有2次击中目标的概率;(2)假设这名射手射击5次,求有3次连续击中目标、另外2次未击中目标的概率;
口袋里装有7个大小相同小球, 其中三个标有数字1, 两个标有数字2, 一个标有数字3, 一个标有数字4.(Ⅰ) 第一次从口袋里任意取一球, 放回口袋里后第二次再任意取一球, 记第一次与第二次取到小球上的数字之和为. 当为何值时, 其发生的概率最大? 说明理由; (Ⅱ) 第一次从口袋里任意取一球, 不再放回口袋里, 第二次再任意取一球, 记第一次与第二次取到小球上的数字之和为. 求的分布列和数学期望.
已知函数).(Ⅰ) 若,试确定函数的单调区间;(Ⅱ) 若函数在其图象上任意一点处切线的斜率都小于,求实数的取值范围.
已知的展开式中前三项的系数成等差数列.(1)求n的值; (2)求展开式中的常数项;
从5名男同学与4名女同学中选3名男同学与2名女同学,分别担任语文、数学、英语、物理、化学科代表.(1)共有多少种不同的选派方法?(2)若女生甲必须担任语文科代表,共有多少种不同的选派方法?(3)若男生乙不能担任英语科代表,共有多少种不同的选派方法?