随机抽取某厂的某种产品200件,经质检,其中有一等品126件、二等品50件、三等品20件、次品4件.已知生产1件一、二、三等品获得的利润分别为6万元、2万元、1万元,而1件次品亏损2万元.设1件产品的利润(单位:万元)为.(Ⅰ)求的分布列;(Ⅱ)求1件产品的平均利润(即的数学期望);(Ⅲ)经技术革新后,仍有四个等级的产品,但次品率降为,一等品率提高为.如果此时要求1件产品的平均利润不小于4.73万元,则三等品率最多是多少?
已知为坐标原点,=(),=(1,),. (1)若的定义域为[-,],求y=的单调递增区间; (2)若的定义域为[,],值域为[2,5],求的值.
将一颗骰子先后抛掷2次,观察向上的点数,求: (1)两数之和为6的概率; (2)两数之积是6的倍数的概率; (3)以第一次向上点数为横坐标x,第二次向上的点数为纵坐标y的点(x,y)在圆x2+y2=15的内部的概率。
已知 (1)若,求x的范围; (2)求的最大值以及此时x的值.
已知=(1,2),=(-2,n) (n>1),与的夹角是45°. (1)求; (2)若与同向,且与-垂直,求.
为了了解某校高一学生体能情况,抽取200位同学进行1分钟跳绳次数测试,将所得数据整理后画出频率分布直方图(如图所示),请回答下列问题: (1)次数在100~110之间的频率是多少? (2)若次数在110以上为达标,试估计该校全体高一学生的达标率是多少? (3)根据频率分布直方图估计,学生跳绳次数的平均数是多少?