随机抽取某厂的某种产品200件,经质检,其中有一等品126件、二等品50件、三等品20件、次品4件.已知生产1件一、二、三等品获得的利润分别为6万元、2万元、1万元,而1件次品亏损2万元.设1件产品的利润(单位:万元)为.(Ⅰ)求的分布列;(Ⅱ)求1件产品的平均利润(即的数学期望);(Ⅲ)经技术革新后,仍有四个等级的产品,但次品率降为,一等品率提高为.如果此时要求1件产品的平均利润不小于4.73万元,则三等品率最多是多少?
本小题满分13分)设是公比为q的等比数列. (Ⅰ)推导的前n项和公式; (Ⅱ)设q≠1, 证明数列不是等比数列.
(本小题满分12分)已知向量,向量,函数. (Ⅰ)求的最小正周期; (Ⅱ)已知分别为内角的对边,为锐角,,且恰是在上的最大值,求和.
(本小题满分14分) (1)当时,求证: (2)当函数()与函数有且仅有一个交点,求的值; (3)讨论函数(且)的零点个数.
(本小题满分13分)如图,分别过椭圆:左右焦点、的动直线相交于点,与椭圆分别交于不同四点, 直线的斜率、、、满足.已知当轴重合时,,. (1)求椭圆的方程; (2)是否存在定点,使得为定值.若存在,求出点坐标并求出此定值,若不存在,说明理由.
(本小题满分12分)已知数列满足:,数列满足:,,数列的前项和为. (1)求证:数列为等比数列; (2)求证:数列为递增数列; (3)若当且仅当时,取得最小值,求的取值范围