随机抽取某厂的某种产品200件,经质检,其中有一等品126件、二等品50件、三等品20件、次品4件.已知生产1件一、二、三等品获得的利润分别为6万元、2万元、1万元,而1件次品亏损2万元.设1件产品的利润(单位:万元)为.(Ⅰ)求的分布列;(Ⅱ)求1件产品的平均利润(即的数学期望);(Ⅲ)经技术革新后,仍有四个等级的产品,但次品率降为,一等品率提高为.如果此时要求1件产品的平均利润不小于4.73万元,则三等品率最多是多少?
(本小题12分)已知函数 (1)求的值; (2)求函数的最大值,并求取最大值时取值的集合; (3)求函数的单调增区间。
如图8所示,四棱锥S-ABCD的底面是正方形,每条侧棱的长都是底面边长的倍,点P在侧棱SD上,且. (Ⅰ)求证:AC⊥SD; (Ⅱ)求二面角P-AC-D的大小; (Ⅲ)侧棱SC上是否存在一点E,使得BE∥平面PAC.若存在,求的值;若不存在,试说明理由.
某班50名学生在一次数学考试中,成绩都属于区间[60,110],将成绩按如下方式分成五组:第一组[60,70);第二组[70,80);第三组[80,90);第四组[90,100);第五组[100,110],部分频率分布直方图如图7所示,及格(成绩不小于90分)的人数为20. (Ⅰ)请补全频率分布直方图; (Ⅱ)由此估计该班的平均分; (Ⅲ)在成绩属于[60,70)∪[100,110]的学生中任取两人,成绩记为,求的概率.
如图6,在三棱柱中,△ABC为等边三角形,侧棱⊥平面,,D、E分别为、的中点. (Ⅰ)求证:DE⊥平面; (Ⅱ)求BC与平面所成角; (Ⅲ)求三棱锥的体积.
甲、乙两人各掷一颗质地均匀的骰子,如果所得它们向上的点数之和为偶数,则甲赢,否则乙赢. (Ⅰ)求两个骰子向上点数之和为8的事件发生的概率; (Ⅱ)这种游戏规则公平吗?试说明理由