随机抽取某厂的某种产品200件,经质检,其中有一等品126件、二等品50件、三等品20件、次品4件.已知生产1件一、二、三等品获得的利润分别为6万元、2万元、1万元,而1件次品亏损2万元.设1件产品的利润(单位:万元)为.(Ⅰ)求的分布列;(Ⅱ)求1件产品的平均利润(即的数学期望);(Ⅲ)经技术革新后,仍有四个等级的产品,但次品率降为,一等品率提高为.如果此时要求1件产品的平均利润不小于4.73万元,则三等品率最多是多少?
如图,正三角形的边长为2,分别在三边和上,且为的中点,. (1)当时,求的大小; (2)求的面积的最小值及使得取最小值时的值.
设函数 (1)当时,解不等式:; (2)若不等式的解集为,求的值.
如图,在中,是的角平分线,的外接圆交于点,. (1)求证:; (2)当时,求的长.
(本小题满分12分)已知函数(). (1)当时,求函数的单调区间; (2)是否存在实数,使恒成立,若存在,求出实数的取值范围;若不存在,说明理由.
(本小题满分12分)已知在与处都取得极值. (1)求,的值; (2)设函数,若对任意的,总存在,使得,求实数的取值范围.