随机抽取某厂的某种产品200件,经质检,其中有一等品126件、二等品50件、三等品20件、次品4件.已知生产1件一、二、三等品获得的利润分别为6万元、2万元、1万元,而1件次品亏损2万元.设1件产品的利润(单位:万元)为.(Ⅰ)求的分布列;(Ⅱ)求1件产品的平均利润(即的数学期望);(Ⅲ)经技术革新后,仍有四个等级的产品,但次品率降为,一等品率提高为.如果此时要求1件产品的平均利润不小于4.73万元,则三等品率最多是多少?
求的值
已知函数. (1)当时,求函数图象在点处的切线方程; (2)当时,讨论函数的单调性; (3)是否存在实数,对任意的恒成立?若存在,求出a的取值范围;若不存在,说明理由.
已知椭圆,过焦点垂直于长轴的弦长为1,且焦点与短轴两端点构成等边三角形. (1)求椭圆的方程; (2)过点的直线l交椭圆于A,B两点,交直线于点E,判断是否为定值,若是,计算出该定值;不是,说明理由.
设数列为等差数列,且;数列的前n项和为. (1)求数列,的通项公式; (2)若为数学的前n项和,求.
如图,在四棱锥中中,底面为菱形,,为的中点. (1)若,求证:平面平面; (2)若平面平面,且,点在线段上,且,求三棱锥的体积.