(本题14分)(1)将一颗骰子(正方体形状)先后抛掷2次,得到的点数分别记为,求及的概率;(2)从区间中随机取两个数,求的概率.
为进行科学实验,观测小球A、B在两条相交成角的直线型轨道上运动的情况,如图(乙)所示,运动开始前,A和B分别距O点3m和1m,后来它们同时以每分钟4m的速度各沿轨道按箭头的方向运动。问:(1)运动开始前,A、B的距离是多少米?(结果保留三位有效数字)。(2)几分钟后,两个小球的距离最小?
已知函数.(Ⅰ)求的最大值及最小值;(Ⅱ)若又给条件q:“|f(x)-m|<2”且P是q的充分条件,求实数m的取值范围
。
(理)在三棱锥S-ABC中,△ABC是边长为4的正三角形,平面SAC⊥平面ABC,SA=SC=2,M、N分别为AB、SB的中点。(Ⅰ)证明:AC⊥SB;(Ⅱ)求二面角N-CM-B的大小;(Ⅲ)求点B到平面CMN的距离.