定义某种运算,的运算原理如下图:则式子 ▲ .
已知集合,,则 .
平面直角坐标系中,如果与都是整数,就称点为整点,命题:①存在这样的直线,既不与坐标轴平行又不经过任何整点;②如果与都是无理数,则直线不经过任何整点;③如果与都是有理数,则直线必经过无穷多个整点;④如果直线经过两个不同的整点,则必经过无穷多个整点;⑤存在恰经过一个整点的直线;其中的真命题是 (写出所有真命题编号).
已知,,,,则的最大值等于 .
若集合且对中其它元素,总有则 .
若等差数列的首项为公差为,前项的和为,则数列为等差数列,且通项为.类似地,请完成下列命题:若各项均为正数的等比数列的首项为,公比为,前项的积为,则 .