(本小题满分12分)袋中有大小、形状相同的红、黑球各一个,现有放回地随机摸3次,每次摸取一个球,考虑摸出球的颜色。(1)试写出此事件的基本事件空间; (2)若摸到红球时得2分,摸到黑球时得1分,求3次摸球所得总分不小于5分的概率。
已知是定义在[-1,1]上的奇函数,且,若任意的,当时,总有.(1)、判断函数在[-1,1]上的单调性,并证明你的结论; (2)、解不等式:;(3)、若对所有的恒成立,其中(是常数),求实数的取值范围.
已知在四棱锥中,底面是矩形,且,,平面,、分别是线段、的中点.(1)证明:;(2)判断并说明上是否存在点,使得∥平面;(3)若与平面所成的角为,求二面角的余弦值.
第26届世界大学生夏季运动会将于2011年8月12日到23日在深圳举行 ,为了搞好接待工作,组委会在某学院招募了12名男志愿者和18名女志愿者。将这30名志愿者的身高编成如右所示的茎叶图(单位:cm):若身高在175cm以上(包括175cm)定义为“高个子”,身高在175cm以下(不包括175cm)定义为“非高个子”,且只有“女高个子”才担任“礼仪小姐”。 (1)如果用分层抽样的方法从“高个子”和“非高个子”中提取5人,再从这5人中选2人,那么至少有一人是 “高个子”的概率是多少?(2)若从所有“高个子”中选3名志愿者,用表示所选志愿者中能担任“礼仪小姐”的人数,试写出的分布列,并求的数学期望。
在极坐标系中,从极点O作直线与另一直线相交于点M,在OM上取一点P,使.(1)求点P的轨迹方程;(2)设R为上任意一点,试求RP的最小值.
已知函数=+有如下性质:如果常数>0,那么该函数在0,上是减函数,在,+∞上是增函数.(Ⅰ)如果函数=+(>0)的值域为6,+∞,求的值;(Ⅱ)研究函数=+(常数>0)在定义域内的单调性,并说明理由;(Ⅲ)对函数=+和=+(常数>0)作出推广,使它们都是你所推广的函数的特例.研究推广后的函数的单调性(只须写出结论,不必证明),并求函数(是正整数)在区间[,2]上的最大值和最小值(可利用你的研究结论).