(本小题满分12分)如图,某小区准备在一直角围墙ABC内的空地上植出一块“绿地ABD”,其中AB长为定值a,BD长可根据需要进行调节(BC足够长)。现规划在ABD的内接正方形BGEF内种花,其余地方种草,且把种草的面积与种花的面积的比值称为“草花比y”(1)设,将y表示成的函数关系式。(2)当BE为多长时,y有最小值?最小值为多少?
佛山某中学高三(1)班排球队和篮球队各有名同学,现测得排球队人的身高(单位:)分别是:、、、、、、、、、,篮球队人的身高(单位:)分别是:、、、、、、、、、. (Ⅰ) 请把两队身高数据记录在如图所示的茎叶图中,并指出哪个队的身高数据方差较小(无需计算); (Ⅱ) 利用简单随机抽样的方法,分别在两支球队身高超过的队员中各抽取一人做代表,设抽取的两人中身高超过的人数为,求的分布列和数学期望.
在中,角、、的对边分别为、、,且,. (Ⅰ) 求的值; (Ⅱ) 设函数,求的值.
已知函数. (Ⅰ)若,求在点处的切线方程; (Ⅱ)求函数的极值点.
数列、的每一项都是正数,,,且、、成等差数列,、、成等比数列,. (Ⅰ)求、的值; (Ⅱ)求数列、的通项公式; (Ⅲ)记,证明:对一切正整数,有.
如图1,矩形中,,,、分别为、边上的点,且,,将沿折起至位置(如图2所示),连结、,其中. (Ⅰ)求证:平面; (Ⅱ)在线段上是否存在点使得平面?若存在,求出点的位置;若不存在,请说明理由. (Ⅲ)求点到平面的距离.