(本小题满分12分)数列{},{},{}满足a0=1,b0=1,c0=0,且=+2,=2,=+,n∈N﹡.(Ⅰ)求数列{},{}的通项公式;(Ⅱ)求使>7000的最小的n的值.
当函数y=x·2x取极小值时,x=________.
已知f(x)=x3-6x2+9x-abc,a<b<c,且f(a)=f(b)=f(c)=0.现给出如下结论:①f(0)f(1)>0; ②f(0)f(1)<0;③f(0)f(3)>0; ④f(0)f(3)<0.其中正确结论的序号是________.
已知函数y=f(x)=x3+3ax2+3bx+c在x=2处有极值,其图像在x=1处的切线平行于直线6x+2y+5=0,则f(x)极大值与极小值之差为________.
若函数f(x)=x2+ax+在上是增函数,则a的取值范围是________.
函数f(x)在定义域R内可导,若f(x)=f(2-x),且当x∈(-∞,1)时,(x-1)f′(x)<0,设a=f(0),b=f,c=f(3),则a,b,c的大小关系为____________.