已知椭圆过点,且离心率,(Ⅰ)求椭圆方程;(Ⅱ)若直线与椭圆交于不同的两点.,且线段的垂直平分线过定点,求的取值范围。
(本小题满分12分)如图,在四棱柱中,底面是等腰梯形,∥,,,顶点在底面内的射影恰为点. (1)求证:; (2)若直线与直线所成的角为,求平面与平面所成角(锐角)的 余弦函数值.
(本小题满分12分)在中,角、、所对的边分别为、、,已知. (1)求的大小; (2)若,求的取值范围.
(本小题满分l0分)选修4—5:不等式选讲 已知函数 (1)当时,解不等式; (2)若存在,使得,成立,求实数的取值范围.
(本小题满分10分)选修4—4:坐标系与参数方程 在直角坐标系中,圆的参数方程为参数).以为极点,轴的非负半轴为极轴建立极坐标系. (1)求圆的极坐标方程; (2)直线的极坐标方程是,射线与圆的交点为,与直线的交点为,求线段的长.
(本小题满分10分)选修4—1:几何证明选讲 如图所示,为圆的切线,为切点,,的角平分线与和圆分别交于点和. (1)求证 (2)求的值.