已知是圆上满足条件的两个点,其中是坐标原点,分别过作轴的垂线段,交椭圆于点,动点满足(I)求动点的轨迹方程.(II)设分别表示和的面积,当点在轴的上方,点在轴的下方时,求 的最大面积.
(本小题满分12分)已知命题p:∀x∈[1,2],x2-a0.命题q:∃x0∈R,使得x02+(a-1)x0+1=0.若“p或q”为真,“p且q”为假,求实数a的取值范围.
(本小题满分12分)设数列的前项和为 ,数列为等比数列,且 .(1)求数列和的通项公式;(2)设,求数列的前项和.
如图,在三棱锥中, 平面, , , ,分别是的中点.(1)求证:;(2)求二面角的余弦值;(3)求点到平面的距离.
如图(1)所示,在直角梯形ABCP中,BC∥AP,AB⊥BC,CD⊥AP,AD=DC=PD=2,E、F、G分别为线段PC、PD、BC的中点,现将△PDC折起,使平面PDC⊥平面ABCD(图(2)).(1)求证:平面EFG∥平面PAB;(2)若点Q是线段PB的中点,求证:PC⊥平面ADQ;(3)求三棱锥C-EFG的体积.
如图,是半径为的半圆,为直径,点为的中点,点和点为线段的三等分点,平面外一点满足 平面,.(1)证明:;(2)求点到平面的距离.