已知(x)是R上的奇函数,且当x>0时,(x)=x,求当x<0时,(x) = 。
已知函数f(x)=ax3+bx2+cx+d的图象与x轴有三个不同交点(0,0),(x1,0),(x2,0),且f(x)在x=1,x=2时取得极值,则x1•x2的值为 .
有一段“三段论”推理是这样的:“对于可导函数f(x),如果f′(x0)=0,那么x=x0是函数f(x)的极值点;因为函数f(x)=x3在x=0处的导数值f′(0)=0,所以x=0是函数f(x)=x3的极值点.”以上推理中(1)大前提错误;(2)小前提错误;(3)推理形式正确;(4)结论正确你认为正确的序号为 .
下列说法正确的是 .①6名学生争夺3项冠军,冠军的获得情况共有36种.②设,“a=0”是“复数a+bi是纯虚数”的必要不充分条件.③(2+3x)10的展开式中含有x8的项的系数与该项的二项式系数相同.
如果随机变量ξ~B(n,p),且Eξ=7,Dξ=6,则P等于_________ .
某人射击,一次击中目标的概率为0.6,经过3次射击,此人至少有两次击中目标的概率为(结论写成小数的形式)_________ .