(本题共12分)如图所示,四边形ABCD是矩形,,F为CE上的点,且BF平面ACE,AC与BD交于点G(1)AE平面BCE(2)AE//平面BFD(3)锥C-BGF的体积
如图,A,B是双曲线的左.右顶点,C,D是双曲线上关于x轴对称的两点,直线AC与BD的交点为E.(1)求点E的轨迹W的方程;(2)若W与x轴的正半轴,y轴的正半轴的交点分别为M,N,直线y=kx(k>0)与W的两个交点分别是P,Q(其中P是第一象限),求四边形MPNQ面积的最大值.
已知椭圆的长轴是短轴的两倍,点在椭圆上,过原点的直线l与椭圆相交于A.B两点,设直线OA,l,OB的斜率分别为,k,,且,k,恰好构成等比数列.(1)求椭圆C的方程;(2)试探究是否为定值?若是,求出这个值;否则求出它的取值范围.
已知数列是递增的等比数列,满足,且是.的等差中项,数列满足,其前n项和为,且.(1)求数列,的通项公式;(2)数列的前n项和为,若不等式对一切恒成立,求实数的取值范围.
设二次函数,函数的两个零点为m,n(m<n).(1)若m=-1,n=2,求不等式F(x)>0的解集;(2)若a>0,且,比较f(x)与m的大小.
已知抛物线上一点Q(4,m)到焦点F的距离为5.(1)求p及m的值;(2)过焦点F的直线L交抛物线于A,B两点,若,求直线L的方程.