定义:若数列对任意的正整数n,都有(d为常数),则称为“绝对和数列”,d叫做“绝对公和”,已知“绝对和数列”,“绝对公和”,则其前2010项和的最小值为 ( )
A.—2011 | B.—2006 | C.—2010 | D.—2009 |
推荐套卷
定义:若数列对任意的正整数n,都有(d为常数),则称为“绝对和数列”,d叫做“绝对公和”,已知“绝对和数列”,“绝对公和”,则其前2010项和的最小值为 ( )
A.—2011 | B.—2006 | C.—2010 | D.—2009 |