(本小题满分13分)已知三棱锥P-ABC中,PA⊥ABC,AB⊥AC,PA=AC=AB,N为AB上一点,AB=4AN,M,S分别为PB,BC的中点.(Ⅰ)证明:CM⊥SN;(Ⅱ)求SN与平面CMN所成角的大小.
已知关于x的方程2x2-(+1)x+m=0的两根为sinθ和cosθ,θ∈(0,2π),求:(1)的值;(2)m的值;
(12分)设平面内的向量点是直线上的一个动点,求当取最小值时,的坐标。
设y=Asin(ωx+j)(A>0,ω>0,|j|<π)最高点D的坐标为(2,),由最高点运动到相邻的最低点时,曲线与轴交点E的坐标为(6,0),求A、ω、j的值.
已知,,当为何值时,与垂直?
求过两点、且圆心在x轴上的圆的标准方程并判断点与圆的关系.