如图,设抛物线方程为直线上任意一点,过M引抛物线的切线,切点分别为A,B。(1)求证:A,M,B三点的横坐标成等差数列;(2)已知当M点的坐标为时,,求此时抛物线的方程;(3)是否存在点M,使得点C关于直线AB的对称点D在抛物线上,其中,点C满足(O为坐标原点).若存在,求出所有适合题意的点M的坐标;若不存在,请说明理由.
用一张长为8 cm,宽为4 cm的矩形硬纸卷成圆柱的侧面,求圆柱的轴截面的面积与底面积.
一个圆锥的高为2 cm,母线与轴的夹角为30°,求圆锥的母线长以及圆锥的轴截面的面积.
正六棱柱各棱长均为1,求一动点从A沿表面移动到点D1时最短的路程.
如右图所示,在正三棱柱ABC—A1B1C1中,AB=3,AA1=4,M为AA1的中点,P是BC上一点,且由P沿棱柱侧面经过棱CC1到M的最短路线长为,设这条最短路线与CC1的交点为N.求:(1)该三棱柱的侧面展开图的对角线长;(2)PC和NC的长.
长方体ABCD—A1B1C1D1(如右图所示),宽、长、高分别为3、4、5,现有一甲壳虫从A出发沿长方体表面爬行到C1来获取食物,试画出它的最短爬行路线,并求其路程的最小值.