(本题16分)如图,某大风车的半径为2米,每12秒沿逆时针方向旋转一周,它的最底点离地面1米,风车圆周上一点A从最底点开始,运动t秒后与地面距离为h米,(1)求函数h=f(t)的关系式, 并在给出的方格纸上用五点作图法作出h=f(t)在一个周期内的图象(要列表,描点);(2) A从最底点开始, 沿逆时针方向旋转第一周内,有多长时间离地面的高度超过4米?
已知椭圆C的极坐标方程为,点F1,F2为其左,右焦点,直线的参数方程为. (1)求直线和曲线C的普通方程; (2)求点F1,F2到直线的距离之和.
如图,AB是⊙O的直径,AC是弦,∠BAC的平分线AD交⊙O于点D,DE⊥AC,交AC的延长线于点E.OE交AD于点F.(1)求证:DE是⊙O的切线;(2)若,求的值.
已知A是曲线ρ=3cosθ上任意一点,求点A到直线ρcosθ=1距离的最大值和最小值。
已知:如图,在△ABC中,∠ABC=90°,O是AB上一点,以O为圆心,OB为半径的圆与AB交于点E,与AC切于点D,连结DB、DE、OC。若AD=2,AE=1,求CD的长。
已知曲线:(1)将曲线绕坐标原点逆时针旋转后,求得到的曲线的方程;(2)求曲线的焦点坐标和渐近线方程.