如图,已知点 F ( 1 , 0 ) ,直线 l : x = - 1 , P 为平面上的动点,过 P 作直线 l 的垂线,垂足为点 Q ,且 Q P ⇀ · Q F ⇀ = F P ⇀ · F Q ⇀ .
(Ⅰ)求动点 P 的轨迹 C 的方程; (Ⅱ)过点 F 的直线交轨迹 C 于 A , B 两点,交直线 l 于点 M ,已知 M A ⇀ = λ 1 A F ⇀ , M B ⇀ = λ 2 A F ⇀ ,求 λ 1 + λ 2 的值;
设数列{an}的前n项和Sn满足=3n-2.(1)求数列{an}的通项公式;(2)设bn=,Tn是数列{bn}的前n项和,求使得Tn<对所有n∈N*都成立的最小正整数m.
已知数列{an}的通项公式为an=n2-n-30.(1)求数列的前三项,60是此数列的第几项?(2)n为何值时,an=0,an>0,an<0?(3)该数列前n项和Sn是否存在最值?说明理由.
设数列{an}的前n项和为Sn.已知a1=a,an+1=Sn+3n,n∈N*.(1)设bn=Sn-3n,求数列{bn}的通项公式;(2)若an+1≥an,n∈N*,求a的取值范围.
已知数列{an}满足:a1=1,2n-1an=an-1(n∈N*,n≥2).(1)求数列{an}的通项公式;(2)这个数列从第几项开始及以后各项均小于?
设复数z=-3cosθ+2isinθ.(1)当θ=时,求|z|的值;(2)若复数z所对应的点在直线x+3y=0上,求的值.