设正整数数列 a n 满足: a 2 = 4 ,且对于任何 n ∈ N * ,有 2 + 1 a n + 1 < 1 a n + a n - 1 1 n - 1 n + 1 < 2 + 1 a n . (1)求 a 1 , a 3 ; (2)求数列 a n 的通项 a n .
已知以点C(t∈R,t≠0)为圆心的圆与x轴交于点O、A,与y轴交于点O、B,其中O为原点.(Ⅰ)求证:△AOB的面积为定值;(Ⅱ)设直线2x+y-4=0与圆C交于点M、N,若,求圆C的方程.(Ⅲ)在(Ⅱ)的条件下,设P、Q分别是直线l:x+y+2=0和圆C上的动点,求的最小值。
已知⊙M:x2+(y-2)2=1,Q是x轴上的动点,QA,QB分别切⊙M于A,B两点.(Ⅰ)若=,求及直线MQ的方程;(Ⅱ)求证:直线AB恒过定点.
三角形ABC的三个顶点A(1,3)B(1,﹣3)C(3,3),求(Ⅰ)BC边上中线AD所在直线的方程;(Ⅱ)三角形ABC的外接圆O1的方程;(Ⅲ)已知圆O2:,求圆心在x-y-4=0,且过圆O1与圆O2交点的圆的方程。
如图,棱锥的底面是矩形,⊥平面,.(1)求证:BD⊥平面PAC;(2)求二面角P—CD—B的大小;(3)求点C到平面PBD的距离.
已知集合A={x|x2﹣2x﹣3≤0},B={x|x2﹣2mx+m2﹣9≤0},m∈R.(1)若m=3,求A∩B;(2)若A⊆B,求实数m的取值范围.