按以下法则建立函数f(x):对于任何实数x,函数f(x)的值都是3-x与x2-4x+3中的最大者,则函数f(x)的最小值等于 .
设函数的定义域为,若存在非零常数使得对于任意有且,则称为上的高调函数.对于定义域为的奇函数,当,若为上的4高调函数,则实数的取值范围为________.
已知函数f(x)=|x2-2|,若f(a)≥f(b),且0≤a≤b,则满足条件的点(a,b)所围成区域的面积为.
已知{}是公差不为0的等差数列,{} 是等比数列,其中,且存在常数α、β ,使得=对每一个正整数都成立,则=.
在△ABC中,已知BC=2,,则△ABC面积的最大值是.
设若存在互异的三个实数使,则的取值范围是.