首页 / 高中数学 / 试题详细
  • 更新 2022-09-03
  • 科目 数学
  • 题型 选择题
  • 难度 较易
  • 浏览 875

已知a、b、c是互不相等的非零实数.若用反证法证明三个方程ax2+2bx+c=0,bx2+2cx+a=0,cx2+2ax+b=0至少有一个方程有两个相异实根,应假设成(   )

A.三个方程都没有两个相异实根 B.一个方程没有两个相异实根
C.至多两个方程没有两个相异实根 D.三个方程不都没有两个相异实根
登录免费查看答案和解析

已知a、b、c是互不相等的非零实数.若用反证法证明三个方程a