(本小题满分14分)一只袋中装有2个白球、3个红球,这些球除颜色外都相同。(Ⅰ)从袋中任意摸出1个球,求摸到的球是白球的概率;(Ⅱ)从袋中任意摸出2个球,求摸出的两个球都是白球的概率;(Ⅲ)从袋中任意摸出2个球,求摸出的两个球颜色不同的概率。
(本小题满分12分)已知函数. (1)求的值; (2)若对于任意的,都有,求实数的取值范围.
(本小题满分10分)函数在P点处的切线平行于直线,求的值。
(本小题满分14分) 已知 (1)当时,求曲线在点处的切线方程; (2)若在区间上是增函数,求实数的取值范围; (3)在(2)的条件下,设关于的方程的两个根为、,若对任意,,不等式恒成立,求的取值范围.
(本小题满分14分) 已知椭圆的离心率为,其中左焦点F(-2,0). (1) 求椭圆C的方程; (2) 若直线y=x+m与椭圆C交于不同的两点A,B,且线段AB的中点M在圆x2+y2=1上, 求m的值.
(本小题满分14分) 如图,正三棱柱中,为 的中点,为边上的动点. (Ⅰ)当点为的中点时,证明DP//平面; (Ⅱ)若,求三棱锥的体积.