将一个各个面上均涂有颜色的正方体锯成27个同样大小的小正方体,从这些小正方体中任取1个,其中恰有2面涂有颜色的概率是 .
已知抛物线,焦点为F,顶点为O,点P(m,n)在抛物线上移动,Q是OP的中点,M是FQ的中点,(1)求点M的轨迹方程.(2)求的取值范围。
经过双曲线的左焦点F1作倾斜角为的弦AB,求(1)线段AB的长;(2)设F2为右焦点,求的面积。
(理)如图,在△ABC中,∠CAB=∠CBA=30°,AC、BC边上的高分别为BD、AE,则以A、B为焦点,且过D、E的椭圆与双曲线的离心率的倒数和为————————————
(文)椭圆上存在一点P,使得点P到两焦点距离比为1:2,则椭圆离心率取值范围为_____
(理)已知以F1(-2,0),F2(2,0)为焦点的椭圆与直线x+y+4=0有且仅有一个公共点,则椭圆的长轴长为_______