(本小题满分14分)已知函数,设曲线y=f(x)在点(xn,f(xn))处的切线与x轴的交点为(xn+1,0)(n ÎN *),x1=4. (Ⅰ)用表示xn+1; (Ⅱ)记an=lg,证明数列{an}成等比数列,并求数列{xn}的通项公式; (Ⅲ)若bn=xn-2,试比较与的大小.
已知圆方程. (1)若圆与直线相交于M,N两点,且(为坐标原点)求的值; (2)在(1)的条件下,求以为直径的圆的方程.
在正方体中,、为棱、的中点. (1)求证:∥平面; (2)求证:平面⊥平面
直线l经过点,且和圆C:相交,截得弦长为,求l的方程.
已知函数f(2x) (I)用定义证明函数在上为减函数。 (II)求在上的最小值.
求经过直线:与直线:的交点,且满足下列条件的直线方程 (1)与直线平行 ; (2)与直线垂直 。