(本小题满分14分)设函数. (Ⅰ)讨论的单调性; (Ⅱ)若对任意恒成立,求实数m的取值范围.
如图,在正方体ABCD-A1B1C1D1中,O为底面ABCD的中心,P是DD1的中点,设Q是CC1上的中点,求证:平面D1BQ∥平面PAO.
根据下列条件求直线方程 (1)过点(2,1)且倾斜角为的直线方程; (2)过点(-3,2)且在两坐标轴截距相等的直线方程.
(14分)如图①,直角梯形中,,点分别在上,且,现将梯形A沿折起,使平面与平面垂直(如图②). (1)求证:平面; (2)当时,求二面角的大小.
(14分)如图,在直三棱柱中,,点是的中点. (Ⅰ)求证:; (Ⅱ)求证:平面; (Ⅲ)求异面直线与所成角的余弦值.
(13分)如图,四棱锥的底面是正方形,,点在棱上. (Ⅰ)求证:平面; (Ⅱ)当且为的中点时,求四面体体积.