(本小题满分12分) 某商场准备在国庆节期间举行促销活动,根据市场调查,该商场决定从种服装商品, 种家电商品, 种日用商品中,选出种商品进行促销活动.(Ⅰ)试求选出的种商品中至多有一种是家电商品的概率;(Ⅱ)商场对选出的某商品采用的促销方案是有奖销售,即在该商品现价的基础上将价格提高元,同时,若顾客购买该商品,则允许有次抽奖的机会,若中奖,则每次中奖都获得数额为元的奖券.假设顾客每次抽奖时获奖的概率都是,若使促销方案对商场有利,则最少为多少元?
已知正方体ABCD-A1B1C1D1的棱长为2,点E为棱AB的中点,求: (Ⅰ)D1E与平面BC1D所成角的大小; (Ⅱ)二面角D-BC1-C的大小; (Ⅲ)异面直线B1D1与BC1之间的距离.
在四棱锥P—ABCD中,底面ABCD是一直角梯形,∠BAD=90°,AD∥BC,AB=BC=a,AD=2a,且PA⊥底面ABCD,PD与底面成30°角. (1)若AE⊥PD,E为垂足,求证:BE⊥PD; (2)求异面直线AE与CD所成角的余弦值.
已知棱长为1的正方体ABCD-A1B1C1D1中,E、F、M分别是A1C1、A1D和B1A上任一点,求证:平面A1EF∥平面B1MC.
已知棱长为1的正方体ABCD-A1B1C1D1,求平面A1BC1与平面ABCD所成的二面角的大小
设曲线有4个不同的交点. (Ⅰ)求θ的取值范围; (Ⅱ)证明这4个交点共圆,并求圆半径的取值范围.