围建一个面积为360m2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m的进出口,如图所示,已知旧墙的维修费用为45元/m,新墙的造价为180元/m,设利用的旧墙的长度为x(单位:米),修建此矩形场地围墙的总费用为y (单位:元).(1)将y表示为x的函数;(2)试确定x,使修建此矩形场地围墙的总费用最小,并求出最小总费用.
(本小题满分12分)如图,在直三棱柱中,AB=1,AC=2,,D,E分别是和的中点. (Ⅰ)证明:DE∥平面ABC;(Ⅱ)求直线DE与平面所成的角.
(本小题满分10分) 已知A,B,C是的内角,分别是其对边长, 向量. (Ⅰ)求角A的大小; (Ⅱ)若,求的长.
(本小题满分12分)已知函数(Ⅰ)求函数的极大值;(Ⅱ)当时,求函数的值域;(Ⅲ)已知,当时,恒成立,求的取值范围.
(本小题满分12分)如图,在直角坐标系中,已知椭圆:的离心率,左、右两个焦点分别为、。过右焦点且与轴垂直的直线与椭圆相交、两点,且. (1)求椭圆的方程;(2)设椭圆的左顶点为,下顶点为,动点满足,试求点的轨迹方程,使点关于该轨迹的对称点落在椭圆上.
(本小题满分12分)已知等差数列{an}的首项,前n项和为Sn,且S4+a2=2S3;等比数列{bn}满足b1=a2,b2=a4(1)若a1=2,设,求数列{cn}的前n项的和Tn;(2)在(1)的条件下,若有的最大值.