已知 ( x , y ∈ R + ) ,且满足 x 3 + y 4 = 1 ,则 x y 的最大值为.
已知f(n)=1+++…+ (n∈N*),用数学归纳法证明f(2n)>时,f(2k+1)-f(2k)等于________.
用数学归纳法证明不等式++…+>的过程中,由n=k推导n=k+1时,不等式的左边增加的式子是________.
若f(n)=12+22+32+…+(2n)2,则f(k+1)与f(k)的递推关系式是________.
凸函数的性质定理为:如果函数f(x)在区间D上是凸函数,则对于区间D内的任意x1,x2,…,xn,有≤f(),已知函数y=sinx在区间(0,π)上是凸函数,则在△ABC中,sinA+sinB+sinC的最大值为________.
请阅读下列材料:若两个正实数a1,a2满足a12+a22=1,那么a1+a2≤.证明:构造函数f(x)=(x-a1)2+(x-a2)2=2x2-2(a1+a2)x+1,因为对一切实数x,恒有f(x)≥0,所以Δ≤0,从而得4(a1+a2)2-8≤0,所以a1+a2≤.根据上述证明方法,若n个正实数满足a12+a22+…+an2=1时,你能得到的结论为________.