同时具有性质“①最小正周期是,②图像关于直线对称;③在上是增函数”的一个函数是( )
第Ⅱ卷(共110分)
(本小题满分13分) 某初级中学共有学生2000名,各年级男、女生人数如下表:
已知在全校学生中随机抽取1名,抽到初二年级女生的概率是0.19. (1)求的值; (2)现用分层抽样的方法在全校抽取48名学生,问应在初三年级抽取多少名? (3)已知,,求初三年级中女生比男生多的概率.
(本小题满分14分)如图5所示,四棱锥的底面是半径为的圆的内接四边形,其中是圆的直径,,,.(1)求线段的长;(2)若,求三棱锥的体积.
(本小题满分12分)某单位用2160万元购得一块空地,计划在该地块上建造一栋至少10层、每层2000平方米的楼房.经测算,如果将楼房建为层,则每平方米的平均建筑费用为(单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?(注:平均综合费用平均建筑费用平均购地费用,平均购地费用)
(本小题满分13分)已知函数,的最大值是1,其图像经过点.(1)求的解析式;(2)已知,且,,求的值.
命题“若函数,在其定义域内是减函数,则”的逆否命题( )