某营养师要为某个儿童预定午餐和晚餐。已知一个单位的午餐含12个单位的碳水化合物6个单位蛋白质和6个单位的维生素 C ;一个单位的晚餐含8个单位的碳水化合物,6个单位的蛋白质和10个单位的维生素 C .另外,该儿童这两餐需要的营养中至少含64个单位的碳水化合物,42个单位的蛋白质和54个单位的维生素 C . 如果一个单位的午餐、晚餐的费用分别是2.5元和4元,那么要满足上述的营养要求,并且花费最少,应当为该儿童分别预定多少个单位的午餐和晚餐?
已知数列满足对任意的,都有, 且. (1)求,的值; (2)求数列的通项公式; (3)设数列的前项和为,不等式对任意的正整数恒成立,求实数的取值范围.
已知函数在上是减函数,在上是增函数,函数在上有三个零点,且1是其中一个零点. (1)求的值; (2)求的取值范围; (3)试探究直线与函数的图像交点个数的情况,并说明理由.
已知动点到定点的距离与点到定直线:的距离之比为. (1)求动点的轨迹的方程; (2)设、是直线上的两个点,点与点关于原点对称,若,求的最小值.
已知直线:,直线:,其中,. (1)求直线的概率; (2)求直线与的交点位于第一象限的概率.
已知函数()的最小正周期为. (Ⅰ)求的值; (Ⅱ)求函数在区间上的取值范围.